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Numerical crisis found in the fixed step integration of a photoconductor model
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A numerical examination is carried out on a theoretical model of irradiated intrinsic semiconductors. De-
pending on the integration artifact employed to solve the model, there are “solutions” that lead to a peculiar
transient consisting of an intermittent chaotic dynamics that breaks down into a cascade of reverse period-
doubling bifurcations. As such oscillatory instabilities are detrimental to photodetector performance, separation
of the dynamics of the model from that of the numerics is crucial for the reliable design of these devices. This
work characterizes these chaotic time series within the context of the potentially chaotic iterative structure that
emerges from the discretization of the mod&1063-651X97)08806-5

PACS numbg(s): 05.45+b, 05.40+j, 02.70—c, 72.40+w

INTRODUCTION so it could be realized that the dynamics of the system may
become complicated, in particular for high intensity of radia-
lllumination of a semiconductor with the proper wave- tion, and the possibility of chaotic oscillations is present.
length unfolds a nonequilibrium complex kinetics that in- Moreover, for the nonlinear photoconductor equatiéhs
volves mainly the generation of electron-hole pairs by opti-there is no analytical solution and then numerical integration
cal absorption, the annihilation of the pair through severatechniques have to be employed, such as the single-step
recombination mechanisms, and the trapping of the carrierRunge-Kutta(RK) method or the multistep Gear method.
Even in the purest samples, the contribution of the trappindrurther, in the event that the present systéin becomes
level (or levelg in the recombination process is significant stiff, the numerical integration is not a straightforward task,
and decisive for examining the time-dependent behavior ofis the numerical outcome depends strongly on the type of
charge carriers. In particular, chaotic oscillations in high-scheme employed; see RE3].
purity Ge, GaAs, and InSb have been detected under a wide Figure Xa shows the time series for the free-electron
variety of experimental conditions a number of years[ddo  population(here the lines joining the successive data points
Yet there are aspects of the physical mechanism of thessere omittegl. This result was obtained with a fourth-order
chaotic oscillations that are not well understood. RK integration of systen(l) and typically consists of a tran-
Here a realistic yet simplified mechanism is considered bysient with an intermittent chaotic stage followed by a cascade
neglecting the presence of deep centers and other types of
defects states. In the present model we have assumed only
one type of shallow trap, which strongly dominates the re-
combination process. This situation is very common and is
reflected in samples where the photoluminescense peak is
located on the low-energy side of the band edge and is very
intense compared to the peak corresponding to the band-gap &
transition. The rate equations for the electron transitions of
the photoconducting process outlined above are given by
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wheren and p are the free electron and hole densities and
mis the trapped electron density at the trap at ttm& more

detailed description of the physical meaning of the seven F|G. 1. (a) Complete transient of the free electrons obtained
parameters present in EQ) is given in Ref.[2]. with the RK algorithm for a;=4.1x10 “cm3s? and h

The essential physical process of photoconduction in in=0.01. (b) Maximum Lyapunov coefficient for the indicated re-
trinsic semiconductors is based on the interplay between thgions in the transient. In parentheses is the Lyapunov dimension for
generation and recombination or trapping of charge carriershe whole transient and after it has ceased.
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of reversal bifurcations that converges into the system fixedHere, for simplicity, the second-order RK recursion formula
points. The convergence of this reverse process actually co(2) is applied to systenil), leading to the expressions
responds to a reverse period-doubling or period-halving bi- L . L .

furcation. By inspection of Fig. (&), as the time progresses, ~ Mk+1= Nkt hfy(tet zh, Nt 3ky, M+ 210, pect 2r0),

the ratio of the successive onset val@escept the last one
follows closely the Feigenbaum number. In the same way,
the ratio of the successiVgeversg branch splitting follows
the corresponding scaling numkdy. This peculiar behavior
disappears completely when integrating H@) with an  \yhere according to the photoconductor rate equatiais
adaptive alg_orlthm Sl_Jch as 'ghe Gee_lr or the Adam-Moultor), .1,, andr, are defined, respectively, as

scheme, which constitutes direct evidence that the observed

My 1= Myt ot shnet 3k 31, pet310), ()

Pr+ 1= Pkt hfa(te+ zh,ne+ 3ke ,m+ 311, pet314),

E:]]aotic transient of Fig. (&) has been numerically induced ky=hf(te,Ne,Me,Py)

The technological importance of photoconductivity, par- =h[G—nya (N—my) + yime—cing],
ticularly its applications in high-speed and far-infrared pho-
todetectors and similar devices, leads to the need for a care- I1=hfa(te, M, My, Pi)

ful investigation of the charge-carrier dynamics. More —hln Ny — M) = SaMubDu— v-m 4
specifically, in order to accomplishraliable design on real [kt (Ne= M) = Somiic— yaMmid, @
devices based on modé) or similar modeldif extended to r1=hfa(te, N, Me, Pr) = (G — SoMPr— CoPy)-
include, for instance, more trapping levels and recombination
centery, it becomes critical to recognize whether the ob-In particular, for the electron population, the corresponding
served irregular transient is due to the nonlinear nature of theector fieldf, is given as
rate equationgl) or it has a purely numerical origin. . . . L
Now, despite the fact that there has been an increasing f1(tetzh,net2ke,m+ 314, Pt 3r1)

amount of work devoted to the study of numerically induced 1 1

. . — —_ + = — + =
chaos[5,6], those studies have focused mainly on the con- G (Mt zky) aa[Ne= (Mt 214)]
ventional asymptonc chaos. This Wo_rk examines the photo- + yi(Me+ 31— c(ne+ 3ky), (5)
conductor transient response, and with the help of techniques
usually employed in the study of asymptotic chaos, a porfeplacing the values df; andl, given in Eq.(4) into Eq.(5)
trayal of the chaotic transient is constructed, pointing ouffor f,

some possible causes of this amazing behavior. .
f1=G—{nk+ zh[G—ngas(N;—my) + yime—cinglte;

EXPERIMENTAL PROCEDURE X (Ne={mic+ 3h[nyas(Ne= M) = Somipic— yamil})
The photoconductor equation®) were evaluated by set- + YoM+ Sh[neag (N — my) — Sompr— yamyJ}
ting the parameters values &-=10'® electron-hole pairs
per cnfs, N=10"cm™3 ¢;=15x10°%s?% c,=1.5 —cq{ni+ zh[G—nyay (Ni—my) + yime—ciniJ}. (6)

X10°st 5,=10 ¥ cm3s!, and y,=0.83 s’ The , , o ,
“parameter of control” in this study will be the probability Solving the innermost products appearing in E).gives
of capture to the trapg,. The parameter, is physically

. ot o 1 f;=G—(n+3hG—3hna N+ shngaym+ shy;m
significant as it is sensitive to the temperature and homoge- * SUSE: 2Tk e 2 T T 2111 Tk

neity of the sample. Therefore, the variation in it should be —theing) (aiNy— a;me— 3ha?ng N+ $ha?n,m,
examined. The initial conditions for conduction electrons, L ) .
trapped electrons, and holes are, respectivaiy=3 + zhay domipy+ zhag yimy) + yim+ zhaniNyys

X 10" cm 3, my=10"°cm3, andpy=5x10cm 3. The

_1 _1 _1 2_
numerical integration of systefit) was carried out by means 2N@MMiey1 = 2N doMiPrcya = 2NMeyi = Cani

of the classical fourth-order Runge-Kutta method. —2hc,G+ theynaNy— theyngaymy
Basically, the RK technique is constructed with a trun- ) L
cated Taylor series where the evaluation of the higher-order ~ —zhcyyime+3zheing. (7)

derivatives are replaced by a set of formulas based on the _
more fundamental explicit Euler algorithfi7]. Here inter-  NOw, when solving the cross products from Ed), second-

mediate points are used to calculate the state at time. order terms fom, will appear. The vector field valug, of
This idea is easily observable for the second-order RK recurEd- (7) can be expressed briefly as

sion formuia fy=4(n M0 +Gs(m + Cy, ®
Xier 1= X+ Mt 30, x+ 2h (X b)), 2 . . .
wheref; contains all terms involving the factoi, g, con-

whereh>0 is the step size anf{(x,,t,) is the vector field tains the terms involving only the factam,, and all remnant
value. terms not involving the charge carrier variables are grouped

It can be showri8] that expressioii2) reproduces a Tay- as a “constant” termC,. Substituting Eq(8) in Eq. (3), the
lor series up to the second-order term. Similarly, the fourth-expression for thek+1 iterate of the discretized electron
order RK reproduces a Taylor series up to the fourth termpopulation is given as
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N+ 1= N+ hfy=n+hnF(ng 1mk)+gl(mk)+cl],( )
9

where the functiorf, results after takingy, as a common
factor inf7, i.e., f;=nF.(n,,m). Rewriting Eq.(9) and
extending for all charge carriers,

Ny 1= 1+hF(ne,m)]+hg(m)+hCy,
My, 1=m[1+hFy(n,my,p)]+hga(py,n) +hCy, (10)

Pi+1=Pul L +hF3(m,py) ]+ hgz(my) +hCs,

whereF; contains the respective first-order terms for the dis-
cretized variable. As i, the variables irF, andF; de-
pend on those present ify and f;, respectively; see Eq.
(4). The second term of Eq10) represents coupling ex-
pressiongy; and the constant ternts;, may play a role in the
bifurcation reversals, to be discussed later.

After some simple transformations, it is possible to see
that the first terms of the recursive formuld) are struc- FIG. 2. Repeller found in phase space fat;=4.1
turally similar to the recursive formula of the well-known 10" cm™s™* for the RK algorithm withh=0.01.
logistic mapx, 1= uX(1—x,) [9], with u as a parameter. N ) ]

This similitude should account for the intermittent chaotic towards positive values, as reported in RéD]. It is worth -
behavior observed in the time series of Efj) for certain  Mentioning that in this study, besides the capture probability,
parameters values, analogous to the logistic map displayingmilar chaotic response has been observed with variations of
chaos through period-doubling bifurcations in tpevs x, ~ the radiation mtensnyG,_ the probability of ejection from the
plot for certain values of the. parameter. As discussed in tr@psyi, and the density of traps, .

factors of the forrmh in the recursion formulas such as Eq. in Figs. Xa) and 2, are indeed chaotic can be found in several

(10) will play the same “parameter” role in the time domain Ways: first, by means of the return map for any of the vari-
asu in the parameter domain. ablesn, m, or p of system(1); second, by the corresponding

power spectrum density; third, by the sensitivity to initial
conditions for a chaotic system; and finally, by the detection
of positive Lyapunov exponents.

For variations of the parameter of contr®], it was ob- Figure 3 shows the first-return map for the density of
served that the photoconductor equatiéhs becomes stiff trapped electrons fora;=4.1x10*cm™3s! and h
since increasing the capture probability amplifies not only=0.01. Here it is possible to appreciate that the irregular
the separation of time scales for the charge carriers, but alsoscillations of the transient are not random but chaotic, as all
the slower and faster components of each variable. For a stithe orbits are(partially) attracted to the nonperiodic object
system the stability of systetfi) and thus of the RK algo- showed in Fig. 3(repelley in the same manner as to the
rithm will be greatly affected depending on the size of thethree-dimensional object of Fig. 2.
step chosenj7]. With a fixed step oth=0.01 for the RK The frequency analysis of the time series was carried out
integrator and increasing the capture probability, the changes
observed in the transient response for electrons follow from
monotonic(i.e., exponential typeg;=5x10 1°cm3s™?)
to (quasjperiodic (@;=6x10 ¥ cm3s?) to irregular s
chaotic oscillations ¢;=4x 10 1 cm™3s™?) and finally to
numerical overflow &;>4.65<10 *cm3s1). Physi-
cally, asa4 grows, there is an enhancement of the trapping
action, which competes significantly with the generation and
recombination of charge carriers. Thus these simultaneous ,
competitive processes affect the separation of time scales
during the time evolution for each variable and between the
variables, producing a strong stiffness over the system. In ?
this situation, the algorithm becomes unstable, affecting
mainly the transient response for the charge carriers, as

RESULTS AND DISCUSSION

i+

shown in Fig. 1a). The collective behavior for the, m, and 0 2 4 s s m,
p populations is better visualized in the phase plot shown in
Fig. 2 for a;=4.1x10"** cm 3s™* andh=0.01. This pro- FIG. 3. First-return map of the trapped electrons dqr=4.64

cess of the photoconductor becoming stiff with the pa- x10 ' cm s ™! andh=0.01, showing a chaotic repeller for the
rameter is consistent with some of the eigenvalues growingrapped charge carrier.
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ics. They play a crucial role in the description of the behav-
ior of a dynamical system, as they are used to measure di-
vergence or convergence from a nearby initial point, that is,
to check the sensitive dependence on initial conditions in
order to detect the presence of chaotic attractors. If we con-
sider a small hypersphere of initial conditions in the phase
space, for sufficiently short time scales, the effect of the dy-
namics will be to distort this set into a hyperellipsoid,
stretched along some directions and contracted along others.
Each Lyapunov coefficient quantifies the average exponen-
tial rate of expansion or contraction for a given direction
(axig). Thus, if there is at least one positive Lyapunov coef-
ficient, it represents a measure of how chaotically the system
behaves. The rate of expansion of the largest axis, corre-
sponding to the most unstable direction of the flow, is mea-
sured by the largest Lyapunov coefficient.

However, Lyapunov exponents are asymptotianeasure
w of such behavior. Nevertheless, in this study an attempt was
made to measure the whole Lyapunov spectrum for defined
regions of the transient, as indicated in Figh)]1 as well as
the Lyapunov dimension. Such an attempt was carried out by
taking advantage of the improved algorithm of Bennetin,
Galgani, and Strelcyn[11] for the evaluation of the

for increasing values of the capture probability. A widening-YaPunov spectrum and care was taken that enough data

of the power spectrum was observed characterized by apoints were taken from the time series as to ensure conver-
increasing broadband noise as the transient becomes chaoft€nce of the Lyapunov exponents. This procedure was pos-
Figure 4 shows the power spectrum density for the density 0§|ble as this algorithm permits one to take arb|trar|Iy_ shprt
electrons fora, = 4.64x 10~ 4 cm3 s L andh=0.01, where time intervals and repeat the integration orthonormalization

there are some wide peaks on a background of continuold] Procedure the necessary number of times to cover the
spectrum, indicating the presence of a strange attrdceor region to be Sth'ed- The resulting spectrum was compqsed
strange repulser in this case of three coefficients, as expected for the system of equations
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FIG. 4. Power spectrum density of the free electrons der
=4.64x10 *cm3s! and h=0.01, showing a background of
the continuous spectrum.

é;_haotic regions, in agreement with the chaotic dynamics, and

for the density of electrons to slight changes on the initiaIF.)raCtiCal.Iy Z€ro inside the periodic windows gnd the bifurca-
conditions, such asi,=9.530 51X 10 and 9.530 510 08 tion region of Fig. 1a). The sgcond and thll’d. Lyapunov
% 10 cm~2 for h=0.05. This last aspect was particularly exponents were always negative and nonvanishing, as ex-

enhanced for the larger step sizes, as expected consistenfj§cted for trajectories with fixed point attractd], as in
with the numerical origin of this chaotic dynamics. the pfesf?'?t case. ., .
Lyapunov characteristic exponents are quantities used to The “dimension” of a system being obsqved corre-
guantify the erratic or chaotic behavior of a system’s dynrclm—'s'pon.ds to the number of mdependent'quantltles needed to
specify the state of the system at any given instant. Thus the

observed dimension of an attractor is the number of indepen-

0.25 - dent quantities needed to specify a point on the attractor. In a
chaotic attractor this dimension is directly related to the
0.2 number of non-negative characteristic Lyapunov exponents;

according to the relatiofil1]

)

0.15

j
0.1 D,_=j—<i21 )\i)/)\jﬂ, 1y

where the Lyapunov coefficients are ordered a&,=---

-3
cm

n(lO17

0 . =\, andj is the largest integer such tha{+---+\;>0.
° 50 100 150 200 250 300 The Lyapunov dimensioD, , which is related to the
Time (arb.units) fractal dimension of the attractdrepeller in this case was

found to be 2.13 for the whole transient up to period one.

FIG. 5. Sensitivity to the initial conditions of the free electrons This dimension gives a lower bound for the number of inde-
for the larger step sizes fom;=2.5x10"*cm s and h pendent variables of the system; thus the value obtained in
=0.05. The upper curve is far,=9.530 5Xx 10 cm 2 and the  this study between 2 and 3 is in complete agreement with the
lower for ng=9.530 510 0& 10" cm ™3, three-dimensional photoconductor model. This dimension is
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The reversal breakdown of chaos through period halving
may cause the bifurcation diagram to “bubble,” that is, the
appearance of certain structures formed by the process of
bifurcation and reversals. Mathematically speaking, this kind
of behavior is known as antimonotonicity5]. As for Fig. 6,
it is possible to appreciate that the chaotic oscillations actu-
ally begin as a bifurcation process. Considering that the pho-
toconductor transient ends as a cascade of revdsmdsFig.
1(a)], the whole transient may be regarded structurally as a
bubble. That is, the transient evolves according to an anti-
o0 8000 auas 000017000 14000 monotonic process. This is in agreement with models in two
or higher dimensions that show suppression of chaos through
a reverse bifurcation by antimonotonic beha\ib4—16.

FIG. 6. First 14 000 points of the time series fon=4 Anothgr approach to explain the Suppressipn of Chaos
X102 cm~3 s~ andh=0.0001, showing that chaotic oscillations COMeS directly from the very concept of chaotic transient,

begin as a bifurcation process according to an antimonotonic preeXtensively studied by Grebogi and Q7] and Tel[18]. In
cess. the context of the trajectories followed by systdf in
phase spacésee Fig. 2, as it evolves with time, the term
chaotic transient refers to the fact than an orbit can spend a
Jong time in the neighborhood of a nonattracting chaotic set
before it leaves, possibly moving off to some nonchaotic
attractor that governs its motion thereafter. In the photocon-
?uctor, the nonattracting chaotic set corresponds to the repel-
er (the intermittent regionand the nonchaotic attractor cor-
responds to the fixed point attractderiod-one attractoys
reached after the stage of inverse period-doubling bifurca-
tions. This rather sudden change from chaotic to nonchaotic
attractor is most probably due to a “crisis”; see Rf7] for
detailed description. Moreover, the time the orbit spends on
the chaotic transient depends sensitively on its initial condi-
from obvious why in the photoconductor case the chaotictions[m]' Thus itis e?(pected for a chaotic transient th_at_the
guratlon of the transienfescape timehas a characteristic

behavior is confined to a transient form, reversing to a stabl lifetime that foll | ith :
asymptotic state by period-doubling bifurcations. Neverthe2V€rage lireime that follows a power faw with a parameter

less, such reverse period-doubling processes are not uncomj’lq' In fact, such a erendence was observed in the
mon. present study. However, in RéR0] it was found that when

Evidence for systems that suppress chaos through rever¥g"Ying two independent parameters of the photoconductor
bifurcations are found in many cases. This reversals havi'del(1), the corresponding escape time followed a power-

been discussed before by Stdrid], proposing that this re- aw depgndence with eaph parameter, but W.ith exactly the
’ samecritical exponent; this parallelism is considered thus as

markable situation is found for a certain class of functions, . ) .

This phenomenon is to be expected much more frequently i rther ev'|dence of thg humerical source underly_mg the cha-

higher-order systems. In general, in a reverse bifurcation proQJ[IC tranS|en'ts'. Thus, n the context of suppression of chaos
rough a crisis according to RéfL7], the breakdown of the

cess the transition from chaos to order is presumably due t . . ; .
some structuralsmal) perturbation, which is incorporated numerically induced photoconductor chaotic transients could
! be related to the controversial idea of a “numerical crisis.”

as a term added to the original functipt4]. The family of
functions with an added perturbation displays initially a bi-
furcation structure. Next a critical stage is reached, where an

infinite.number of fixed points emerge and the population CONCLUSION

dynamics becomes chaotic; then an ordered sequence of pe-

riodic windows is entered until finally all chaos is removed The dynamics of a photoconductor model constructed
through reversals to reach a period one for the steady statith a set of nonlinear coupled ordinary differential equa-
(as in Figs. 1 and )2 This description fits the observed be- tions has been examined. It was found that in the event that
havior displayed in Figs. 1 and 6 for the first 14 000 points ofthe system of equations becomes stiff, numerical integration
the time series for;=4x10 > cm s ! andh=0.0001.  with fixed step schemes produces a complex transient con-
For the photoconductor case, it is possible to speculate thaisting of an intermittent regime followed by a cascade of
the origin of the perturbation in the photoconductor could beperiod-doubling reverse bifurcations. It was concluded that
traced to the remnant constant terms appearing in the dishe observed dynamics was indeed chaotic as it conforms to
cretized equatior(10). These remaining terms build up in the characteristic features expected in a chaotic regime. Such
each successive iteration of the explicit RK algorithm. Onbehavior is undesirable for the performance of photoconduc-
the other hand, none of these effects are to be expected ftor devices and may restrict the range of material parameters
the multistep—variable-step implicit Gear algorithm becausdor which chaotic oscillations can be expected. Instead, it
error is much better controllgd]. was shown that application of a RK scheme over the photo-
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n(lOW
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somewhat higher than the previously calculated dimensio
for the very similar Lorenz moddR], with a Lyapunov di-
mension of 2.0713], a result to be expected since only two
of the three Lorenz equations are nonlinear. For the periodi
regions of Fig. 1a) a Lyapunov dimension very close to one
was obtained; see Fig(H).

As pointed out in Ref[3], discretization through a RK
routine of the photoconductor equatiofly may lead to a
numerical induced chaos related to the homoclinical struc
ture associated with the system. Such situation have be
precisely studied in certain mod€|lS,6]. However, it is far
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conductor model leads to a nonlinear iterative structure, thampact over a theoretical model applied in the development
may become responsible for the chaotic behavior observe®f a given device.

This opens the possibility of a homoclinic structure associ-

ated with the photoconductor equations, which may belong ACKNOWLEDGMENT
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