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Numerical crisis found in the fixed step integration of a photoconductor model

Alicia Serfaty de Markus
Centro de Estudios Avanzados en Optica, Facultad de Ciencias, Universidad de los Andes, Me´rida, Venezuela

~Received 21 January 1997!

A numerical examination is carried out on a theoretical model of irradiated intrinsic semiconductors. De-
pending on the integration artifact employed to solve the model, there are ‘‘solutions’’ that lead to a peculiar
transient consisting of an intermittent chaotic dynamics that breaks down into a cascade of reverse period-
doubling bifurcations. As such oscillatory instabilities are detrimental to photodetector performance, separation
of the dynamics of the model from that of the numerics is crucial for the reliable design of these devices. This
work characterizes these chaotic time series within the context of the potentially chaotic iterative structure that
emerges from the discretization of the model.@S1063-651X~97!08806-5#

PACS number~s!: 05.45.1b, 05.40.1j, 02.70.2c, 72.40.1w
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INTRODUCTION

Illumination of a semiconductor with the proper wav
length unfolds a nonequilibrium complex kinetics that i
volves mainly the generation of electron-hole pairs by op
cal absorption, the annihilation of the pair through seve
recombination mechanisms, and the trapping of the carr
Even in the purest samples, the contribution of the trapp
level ~or levels! in the recombination process is significa
and decisive for examining the time-dependent behavio
charge carriers. In particular, chaotic oscillations in hig
purity Ge, GaAs, and InSb have been detected under a w
variety of experimental conditions a number of years ago@1#.
Yet there are aspects of the physical mechanism of th
chaotic oscillations that are not well understood.

Here a realistic yet simplified mechanism is considered
neglecting the presence of deep centers and other type
defects states. In the present model we have assumed
one type of shallow trap, which strongly dominates the
combination process. This situation is very common and
reflected in samples where the photoluminescense pea
located on the low-energy side of the band edge and is v
intense compared to the peak corresponding to the band
transition. The rate equations for the electron transitions
the photoconducting process outlined above are given b

dn

dt
5G2na1~Nt2m!1g1m2c1n,

dm

dt
5na1~Nt2m!2d0mp2g1m, ~1!

dp

dt
5G2d0mp2c2p,

wheren and p are the free electron and hole densities a
m is the trapped electron density at the trap at timet. A more
detailed description of the physical meaning of the se
parameters present in Eq.~1! is given in Ref.@2#.

The essential physical process of photoconduction in
trinsic semiconductors is based on the interplay between
generation and recombination or trapping of charge carri
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so it could be realized that the dynamics of the system m
become complicated, in particular for high intensity of rad
tion, and the possibility of chaotic oscillations is prese
Moreover, for the nonlinear photoconductor equations~1!
there is no analytical solution and then numerical integrat
techniques have to be employed, such as the single-
Runge-Kutta~RK! method or the multistep Gear metho
Further, in the event that the present system~1! becomes
stiff, the numerical integration is not a straightforward tas
as the numerical outcome depends strongly on the type
scheme employed; see Ref.@3#.

Figure 1~a! shows the time series for the free-electr
population~here the lines joining the successive data poi
were omitted!. This result was obtained with a fourth-orde
RK integration of system~1! and typically consists of a tran
sient with an intermittent chaotic stage followed by a casc

FIG. 1. ~a! Complete transient of the free electrons obtain
with the RK algorithm for a154.1310214 cm23 s21 and h
50.01. ~b! Maximum Lyapunov coefficient for the indicated re
gions in the transient. In parentheses is the Lyapunov dimension
the whole transient and after it has ceased.
88 © 1997 The American Physical Society
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56 89NUMERICAL CRISIS FOUND IN THE FIXED STEP . . .
of reversal bifurcations that converges into the system fi
points. The convergence of this reverse process actually
responds to a reverse period-doubling or period-halving
furcation. By inspection of Fig. 1~a!, as the time progresse
the ratio of the successive onset values~except the last one!
follows closely the Feigenbaum number. In the same w
the ratio of the successive~reverse! branch splitting follows
the corresponding scaling number@4#. This peculiar behavior
disappears completely when integrating Eq.~1! with an
adaptive algorithm such as the Gear or the Adam-Moul
scheme, which constitutes direct evidence that the obse
chaotic transient of Fig. 1~a! has been numerically induce
@3#.

The technological importance of photoconductivity, pa
ticularly its applications in high-speed and far-infrared ph
todetectors and similar devices, leads to the need for a c
ful investigation of the charge-carrier dynamics. Mo
specifically, in order to accomplish areliable design on real
devices based on model~1! or similar models~if extended to
include, for instance, more trapping levels and recombina
centers!, it becomes critical to recognize whether the o
served irregular transient is due to the nonlinear nature of
rate equations~1! or it has a purely numerical origin.

Now, despite the fact that there has been an increa
amount of work devoted to the study of numerically induc
chaos@5,6#, those studies have focused mainly on the c
ventional asymptotic chaos. This work examines the pho
conductor transient response, and with the help of techniq
usually employed in the study of asymptotic chaos, a p
trayal of the chaotic transient is constructed, pointing
some possible causes of this amazing behavior.

EXPERIMENTAL PROCEDURE

The photoconductor equations~1! were evaluated by set
ting the parameters values asG51016 electron-hole pairs
per cm2 s, Nt51014 cm23, c151.531023 s21, c251.5
31025 s21, d0510215 cm23 s21, and g150.83 s21. The
‘‘parameter of control’’ in this study will be the probability
of capture to the trapsa1 . The parametera1 is physically
significant as it is sensitive to the temperature and homo
neity of the sample. Therefore, the variation in it should
examined. The initial conditions for conduction electron
trapped electrons, and holes are, respectively,n053
31015 cm23, m051010 cm23, and p05531013 cm23. The
numerical integration of system~1! was carried out by mean
of the classical fourth-order Runge-Kutta method.

Basically, the RK technique is constructed with a tru
cated Taylor series where the evaluation of the higher-o
derivatives are replaced by a set of formulas based on
more fundamental explicit Euler algorithm@7#. Here inter-
mediate points are used to calculate the state at timetk11 .
This idea is easily observable for the second-order RK re
sion formula

xk115xk1h f„tk1
1
2h,xk1

1
2h f~xk ,tk!…, ~2!

whereh.0 is the step size andf (xk ,tk) is the vector field
value.

It can be shown@8# that expression~2! reproduces a Tay
lor series up to the second-order term. Similarly, the four
order RK reproduces a Taylor series up to the fourth te
d
r-
i-

y,

n
ed

-
-
re-

n
-
e

ng

-
-
es
r-
t

e-
e
,

-
er
he

r-

-
.

Here, for simplicity, the second-order RK recursion formu
~2! is applied to system~1!, leading to the expressions

nk115nk1h f1~ tk1
1
2h,nk1

1
2k1 ,mk1

1
2 l 1 ,pk1

1
2 r 1!,

mk115mk1h f2~ tk1
1
2h,nk1

1
2k1 ,mk1

1
2 l 1 ,pk1

1
2 r 1!, ~3!

pk115pk1h f3~ tk1
1
2h,nk1

1
2k1 ,mk1

1
2 l 1 ,pk1

1
2 r 1!,

where, according to the photoconductor rate equations~1!,
k1 , l 1 , andr 1 are defined, respectively, as

k15h f1~ tk ,nk ,mk ,pk!

5h@G2nka1~Nt2mk!1g1mk2c1nk#,

l 15h f2~ tk ,nk ,mk ,pk!

5h@nka1~Nt2mk!2d0mkpk2g1mk#, ~4!

r 15h f3~ tk ,nk ,mk ,pk!5h~G2d0mkpk2c2pk!.

In particular, for the electron population, the correspond
vector field f 1 is given as

f 1~ tk1
1
2h,nk1

1
2k1 ,mk1

1
2 l 1 ,pk1

1
2 r 1!

5G2~nk1
1
2k1!a1@Nt2~mk1

1
2 l 1!#

1g1~mk1
1
2 l 1!2c1~nk1

1
2k1!, ~5!

replacing the values ofk1 andl 1 given in Eq.~4! into Eq.~5!
for f 1 ,

f 15G2$nk1
1
2h@G2nka1~Nt2mk!1g1mk2c1nk#%a1

3„Nt2$mk1
1
2h@nka1~Nt2mk!2d0mkpk2g1mk#%…

1g1$mk1
1
2h@nka1~Nt2mk!2d0mkpk2g1mk#%

2c1$nk1
1
2h@G2nka1~Nt2mk!1g1mk2c1nk#%. ~6!

Solving the innermost products appearing in Eq.~6! gives

f 15G2~nk1
1
2hG2 1

2hnka1Nt1
1
2hnka1mk1

1
2hg1mk

2 1
2hc1nk!~a1Nt2a1mk2

1
2ha1

2nkNt1
1
2ha1

2nkmk

1 1
2ha1d0mkpk1

1
2ha1g1mk!1g1mk1

1
2ha1nkNtg1

2 1
2ha1nkmkg12

1
2hd0mkpkg12

1
2hmkg1

22c1nk

2 1
2hc1G1 1

2hc1nka1Nt2
1
2hc1nka1mk

2 1
2hc1g1mk1

1
2hc1

2nk . ~7!

Now, when solving the cross products from Eq.~7!, second-
order terms fornk will appear. The vector field valuef 1 of
Eq. ~7! can be expressed briefly as

f 15 f 18~nk ,mk!1g1~mk!1C1 , ~8!

where f 18 contains all terms involving the factornk , g1 con-
tains the terms involving only the factormk , and all remnant
terms not involving the charge carrier variables are grou
as a ‘‘constant’’ termC1 . Substituting Eq.~8! in Eq. ~3!, the
expression for thek11 iterate of the discretized electro
population is given as
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90 56ALICIA SERFATY de MARKUS
nk115nk1h f15nk1h@nkF1~nk ,mk!1g1~mk!1C1#,
~9!

where the functionF1 results after takingnk as a common
factor in f 18 , i.e., f 185nkF1(nk ,mk). Rewriting Eq.~9! and
extending for all charge carriers,

nk115nk@11hF1~nk ,mk!#1hg1~mk!1hC1 ,

mk115mk@11hF2~nk ,mk ,pk!#1hg2~pk ,nk!1hC2 , ~10!

pk115pk@11hF3~mk ,pk!#1hg3~mk!1hC3 ,

whereFi contains the respective first-order terms for the d
cretized variable. As inF1 , the variables inF2 andF3 de-
pend on those present inf 2 and f 3 , respectively; see Eq
~4!. The second term of Eq.~10! represents coupling ex
pressionsgi and the constant termsCi may play a role in the
bifurcation reversals, to be discussed later.

After some simple transformations, it is possible to s
that the first terms of the recursive formulas~10! are struc-
turally similar to the recursive formula of the well-know
logistic mapxk115mxk(12xk) @9#, with m as a parameter
This similitude should account for the intermittent chao
behavior observed in the time series of Eq.~1! for certain
parameters values, analogous to the logistic map displa
chaos through period-doubling bifurcations in them vs xk
plot for certain values of them parameter. As discussed i
Ref. @3# for a simple nonlinear equation, the emergence
factors of the formnh in the recursion formulas such as E
~10! will play the same ‘‘parameter’’ role in the time doma
asm in the parameter domain.

RESULTS AND DISCUSSION

For variations of the parameter of controla1 , it was ob-
served that the photoconductor equations~1! becomes stiff
since increasing the capture probability amplifies not o
the separation of time scales for the charge carriers, but
the slower and faster components of each variable. For a
system the stability of system~1! and thus of the RK algo-
rithm will be greatly affected depending on the size of t
step chosen@7#. With a fixed step ofh50.01 for the RK
integrator and increasing the capture probability, the chan
observed in the transient response for electrons follow fr
monotonic~i.e., exponential type,a155310216 cm23 s21!
to ~quasi!periodic (a156310215 cm23 s21) to irregular
chaotic oscillations (a154310214 cm23 s21) and finally to
numerical overflow (a1.4.65310214 cm23 s21). Physi-
cally, asa1 grows, there is an enhancement of the trapp
action, which competes significantly with the generation a
recombination of charge carriers. Thus these simultane
competitive processes affect the separation of time sc
during the time evolution for each variable and between
variables, producing a strong stiffness over the system
this situation, the algorithm becomes unstable, affect
mainly the transient response for the charge carriers
shown in Fig. 1~a!. The collective behavior for then, m, and
p populations is better visualized in the phase plot shown
Fig. 2 for a154.1310214 cm23 s21 andh50.01. This pro-
cess of the photoconductor becoming stiff with thea1 pa-
rameter is consistent with some of the eigenvalues grow
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towards positive values, as reported in Ref.@10#. It is worth
mentioning that in this study, besides the capture probabi
similar chaotic response has been observed with variation
the radiation intensityG, the probability of ejection from the
trapsg1 , and the density of trapsNt .

Evidence that the irregular transients, such as those sh
in Figs. 1~a! and 2, are indeed chaotic can be found in seve
ways: first, by means of the return map for any of the va
ablesn, m, or p of system~1!; second, by the correspondin
power spectrum density; third, by the sensitivity to initi
conditions for a chaotic system; and finally, by the detect
of positive Lyapunov exponents.

Figure 3 shows the first-return map for the density
trapped electrons fora154.1310214 cm23 s21 and h
50.01. Here it is possible to appreciate that the irregu
oscillations of the transient are not random but chaotic, as
the orbits are~partially! attracted to the nonperiodic objec
showed in Fig. 3~repeller! in the same manner as to th
three-dimensional object of Fig. 2.

The frequency analysis of the time series was carried

FIG. 2. Repeller found in phase space fora154.1
310214 cm23 s21 for the RK algorithm withh50.01.

FIG. 3. First-return map of the trapped electrons fora154.64
310214 cm23 s21 andh50.01, showing a chaotic repeller for th
trapped charge carrier.
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56 91NUMERICAL CRISIS FOUND IN THE FIXED STEP . . .
for increasing values of the capture probability. A wideni
of the power spectrum was observed characterized by
increasing broadband noise as the transient becomes ch
Figure 4 shows the power spectrum density for the densit
electrons fora154.64310214 cm23 s21 andh50.01, where
there are some wide peaks on a background of continu
spectrum, indicating the presence of a strange attractor~i.e.,
strange repulser in this case!.

The characteristic sensitivity to initial conditions expect
in chaotic regimes was observed in the photoconductor
tem ~1!. Figure 5 shows a distinctive change in the respo
for the density of electrons to slight changes on the ini
conditions, such asn059.530 5131014 and 9.530 510 08
31014 cm23 for h50.05. This last aspect was particular
enhanced for the larger step sizes, as expected consist
with the numerical origin of this chaotic dynamics.

Lyapunov characteristic exponents are quantities use
quantify the erratic or chaotic behavior of a system’s dyna

FIG. 4. Power spectrum density of the free electrons fora1

54.64310214 cm23 s21 and h50.01, showing a background o
the continuous spectrum.

FIG. 5. Sensitivity to the initial conditions of the free electro
for the larger step sizes fora152.5310215 cm23 s21 and h
50.05. The upper curve is forn059.530 5131014 cm23 and the
lower for n059.530 510 0831014 cm23.
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ics. They play a crucial role in the description of the beha
ior of a dynamical system, as they are used to measure
vergence or convergence from a nearby initial point, that
to check the sensitive dependence on initial conditions
order to detect the presence of chaotic attractors. If we c
sider a small hypersphere of initial conditions in the pha
space, for sufficiently short time scales, the effect of the
namics will be to distort this set into a hyperellipsoi
stretched along some directions and contracted along oth
Each Lyapunov coefficient quantifies the average expon
tial rate of expansion or contraction for a given directi
~axis!. Thus, if there is at least one positive Lyapunov co
ficient, it represents a measure of how chaotically the sys
behaves. The rate of expansion of the largest axis, co
sponding to the most unstable direction of the flow, is m
sured by the largest Lyapunov coefficient.

However, Lyapunov exponents are anasymptoticmeasure
of such behavior. Nevertheless, in this study an attempt
made to measure the whole Lyapunov spectrum for defi
regions of the transient, as indicated in Fig. 1~b!, as well as
the Lyapunov dimension. Such an attempt was carried ou
taking advantage of the improved algorithm of Bennet
Galgani, and Strelcyn@11# for the evaluation of the
Lyapunov spectrum and care was taken that enough
points were taken from the time series as to ensure con
gence of the Lyapunov exponents. This procedure was p
sible as this algorithm permits one to take arbitrarily sh
time intervals and repeat the integration orthonormalizat
@11# procedure the necessary number of times to cover
region to be studied. The resulting spectrum was compo
of three coefficients, as expected for the system of equat
~1!. Results are shown in Fig. 1~b! for the maximum
Lyapunov exponent, which turn out to be positive within t
chaotic regions, in agreement with the chaotic dynamics,
practically zero inside the periodic windows and the bifurc
tion region of Fig. 1~a!. The second and third Lyapuno
exponents were always negative and nonvanishing, as
pected for trajectories with fixed point attractors@12#, as in
the present case.

The ‘‘dimension’’ of a system being observed corr
sponds to the number of independent quantities neede
specify the state of the system at any given instant. Thus
observed dimension of an attractor is the number of indep
dent quantities needed to specify a point on the attractor.
chaotic attractor this dimension is directly related to t
number of non-negative characteristic Lyapunov expone
according to the relation@11#

DL5 j2S (
i51

j

l i D Y l j11 , ~11!

where the Lyapunov coefficientsl i are ordered asl1>•••
>ln and j is the largest integer such thatl11•••1l j.0.

The Lyapunov dimensionDL , which is related to the
fractal dimension of the attractor~repeller in this case!, was
found to be 2.13 for the whole transient up to period o
This dimension gives a lower bound for the number of ind
pendent variables of the system; thus the value obtaine
this study between 2 and 3 is in complete agreement with
three-dimensional photoconductor model. This dimension
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somewhat higher than the previously calculated dimens
for the very similar Lorenz model@9#, with a Lyapunov di-
mension of 2.07@13#, a result to be expected since only tw
of the three Lorenz equations are nonlinear. For the perio
regions of Fig. 1~a! a Lyapunov dimension very close to on
was obtained; see Fig. 1~b!.

As pointed out in Ref.@3#, discretization through a RK
routine of the photoconductor equations~1! may lead to a
numerical induced chaos related to the homoclinical str
ture associated with the system. Such situation have b
precisely studied in certain models@5,6#. However, it is far
from obvious why in the photoconductor case the chao
behavior is confined to a transient form, reversing to a sta
asymptotic state by period-doubling bifurcations. Nevert
less, such reverse period-doubling processes are not un
mon.

Evidence for systems that suppress chaos through rev
bifurcations are found in many cases. This reversals h
been discussed before by Stone@14#, proposing that this re-
markable situation is found for a certain class of functio
This phenomenon is to be expected much more frequent
higher-order systems. In general, in a reverse bifurcation
cess the transition from chaos to order is presumably du
some structural~small! perturbation, which is incorporate
as a term added to the original function@14#. The family of
functions with an added perturbation displays initially a
furcation structure. Next a critical stage is reached, where
infinite number of fixed points emerge and the populat
dynamics becomes chaotic; then an ordered sequence o
riodic windows is entered until finally all chaos is remov
through reversals to reach a period one for the steady s
~as in Figs. 1 and 2!. This description fits the observed b
havior displayed in Figs. 1 and 6 for the first 14 000 points
the time series fora154310212 cm23 s21 andh50.0001.
For the photoconductor case, it is possible to speculate
the origin of the perturbation in the photoconductor could
traced to the remnant constant terms appearing in the
cretized equation~10!. These remaining terms build up i
each successive iteration of the explicit RK algorithm. O
the other hand, none of these effects are to be expecte
the multistep–variable-step implicit Gear algorithm beca
error is much better controlled@7#.

FIG. 6. First 14 000 points of the time series fora154
310212 cm23 s21 andh50.0001, showing that chaotic oscillation
begin as a bifurcation process according to an antimonotonic
cess.
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The reversal breakdown of chaos through period halv
may cause the bifurcation diagram to ‘‘bubble,’’ that is, t
appearance of certain structures formed by the proces
bifurcation and reversals. Mathematically speaking, this k
of behavior is known as antimonotonicity@15#. As for Fig. 6,
it is possible to appreciate that the chaotic oscillations ac
ally begin as a bifurcation process. Considering that the p
toconductor transient ends as a cascade of reversals@see Fig.
1~a!#, the whole transient may be regarded structurally a
bubble. That is, the transient evolves according to an a
monotonic process. This is in agreement with models in t
or higher dimensions that show suppression of chaos thro
a reverse bifurcation by antimonotonic behavior@14–16#.

Another approach to explain the suppression of ch
comes directly from the very concept of chaotic transie
extensively studied by Grebogi and OH@17# and Tel@18#. In
the context of the trajectories followed by system~1! in
phase space~see Fig. 2!, as it evolves with time, the term
chaotic transient refers to the fact than an orbit can spen
long time in the neighborhood of a nonattracting chaotic
before it leaves, possibly moving off to some nonchao
attractor that governs its motion thereafter. In the photoc
ductor, the nonattracting chaotic set corresponds to the re
ler ~the intermittent region! and the nonchaotic attractor co
responds to the fixed point attractors~period-one attractors!,
reached after the stage of inverse period-doubling bifur
tions. This rather sudden change from chaotic to noncha
attractor is most probably due to a ‘‘crisis’’; see Ref.@17# for
a detailed description. Moreover, the time the orbit spends
the chaotic transient depends sensitively on its initial con
tions @18#. Thus it is expected for a chaotic transient that t
duration of the transient~escape time! has a characteristic
average lifetime that follows a power law with a parame
@17,19#. In fact, such a dependence was observed in
present study. However, in Ref.@20# it was found that when
varying two independent parameters of the photocondu
model~1!, the corresponding escape time followed a pow
law dependence with each parameter, but with exactly
samecritical exponent; this parallelism is considered thus
further evidence of the numerical source underlying the c
otic transients. Thus, in the context of suppression of ch
through a crisis according to Ref.@17#, the breakdown of the
numerically induced photoconductor chaotic transients co
be related to the controversial idea of a ‘‘numerical crisis

CONCLUSION

The dynamics of a photoconductor model construc
with a set of nonlinear coupled ordinary differential equ
tions has been examined. It was found that in the event
the system of equations becomes stiff, numerical integra
with fixed step schemes produces a complex transient c
sisting of an intermittent regime followed by a cascade
period-doubling reverse bifurcations. It was concluded t
the observed dynamics was indeed chaotic as it conform
the characteristic features expected in a chaotic regime. S
behavior is undesirable for the performance of photocond
tor devices and may restrict the range of material parame
for which chaotic oscillations can be expected. Instead
was shown that application of a RK scheme over the pho

o-
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conductor model leads to a nonlinear iterative structure,
may become responsible for the chaotic behavior obser
This opens the possibility of a homoclinic structure asso
ated with the photoconductor equations, which may belo
to a certain family of functions that suppress chaos with
furcations reversals through an antimonotonic numerical
sis. Therefore, it is critical to evaluate as well the numeri
ys

ta
at
d.
i-
g
i-
i-
l

impact over a theoretical model applied in the developm
of a given device.
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